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Monte Carlo methods are used to study pure U(N), N =2, 3, 4, 5, and 6, gauge fields in four
space-time dimensions. Using Wilson’s form of the action, first-order phase transitions are
clearly seen at 8, =3.30, 6.88, 12.14, 18.8, and 27.0 for U(2), U(3), U(4), U(5), and U(6),

respectively.

Recent Monte Carlo analyses'~® have found unex-
pected first-order phase transitions in SU(N) lattice
gauge theory for N larger than 3. These transitions
are probably not deconfining and may be artifacts of
the Wilson action. In this paper we study U(N) lat-
tice gauge theory and find a first-order transition al-
ready at N =2.

Why should we study U(N)? In the continuum
field theory, the model trivially reduces to the direct
product of decoupled SU(N) and U(1) gauge fields.
Our investigations can only provide information on
lattice artifacts. These, however, may be useful for
an analytic understanding of the confinement
mechanism.’

On the lattice, U(1) gauge theory has a second-
order phase transition!’~!? between strong-coupling
confinement and weak coupling with massless pho-
tons as spin waves. As free photons should also oc-
cur in the weakly coupled U(N) theory, some non-
trivial phase structure is expected. However, in the
lattice theory the U(1) and SU(N) fields are highly
coupled and the nature of the transition may change.
Also, the large-N SU(N) transitions may become
entwined with the U(1) critical behavior. We will see
that this is indeed the case in that all the U(N)
models studied here show a single first-order transi-
tion.

We study Wilson’s lattice gauge theory'® for the
gauge groups U(N), for N =2, 3,4, 5, and 6. We
work on a hypercubical lattice of four Euclidean
space-time dimensions. On each link {/,j} joining
nearest neighbors / and j sits a matrix Uy from
U(N). We can always write

UU =6Xp(i0u) UU N

where Uy is an N X N unitary unimodular matrix of
SU(N). By this device we can separate out the de-
grees of freedom 6 associated with the center of the
group. The group manifold is covered when 6
sweeps over the interval [0,27/N] and U sweeps

over SU(N). We define our partition function by

z(ﬁ)=f (ElldU”

where the inverse temperature g is related to the
bare coupling constant go by 8=2N/g,2. The mea-
sure in the partition function is the normalized in-
variant Haar measure for the group. The action!? § is
the sum over all plaquettes O in the lattice,

exp(—gSI[UD) ,

S[U1= 35, = 2[1 ~ReTrUg
a a

Here the sum extends over all elementry squares or
plaquettes of the lattice and Up is an ordered group
product of link variables around a plaquette. The
system is equilibrated using the method of Metropolis
et al.'* Once the system is in a state of statistical
equilibrium, we measure the average action per pla-
quette (E).

Using well-known techniques it is easy to establish
that, for U(N) and SU(N), the leading-order high-
temperature expansions are given by

(E) |1~ 3w 08 (1)
= 2
1_3]%2"(1'*'52,“—3@1?53,1\:"‘0(133) , (1b)

respectively, while the leading-order low-temperature
expansions for U(N) and SU(N) are given by

N*/4B+0(B™), (2a)
(E)=1n2_ -2 (2b)

(N -1)/4B+0(B7?) , b
respectively. Equations (2) represent %sz 1/28
per nongauge degree of freedom.

In Figs. 1(a)—1(e) we show the average action per
plaquette for U(2), U(3), U(4), U(5), and U(6),
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FIG. 1. The average action per plaquette for (a) U(2),
(b) UB), (c) U@), (d) U(5), and (e) U(6) on a 4* lattice as
a function of the inverse temperature 8. The solid circles
were extracted from the evolution of the ordered and disor-
dered starts, while the crosses and open circles represent the
average over the last 20 of 100 iterations through the lattice
for ordered and disordered starting lattices, respectively.
The curves represent the leading-order high- and low-
temperature expansions of Egs. (1a) and (2a), respectively.
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FIG. 2. The evolution of the ordered and disordered con-
figurations for the average action per plaquette for (a) U(2),
(b) U@3), (c) U4), (d) U(5), and (e) U(6) for a 4* lattice
at the appropriate critical inverse temperatures.
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respectively, on a 4* lattice as a function of the in-
verse temperature 8. All the data points are the
result of 100 iterations through the lattice with an
average over the last 20 iterations. In the high-
temperature region the average action per plaquette
for ordered and disordered starting lattices quickly
converged to a unique value. The relaxation time for
the lattice lengthens in the crossover region between
the high- and low-temperature regimes and hysteresis
loops are clearly visible. The critical inverse tempera-
tures are estimated from the hysteresis loops to be
B.=3.30 £0.05, 6.88 £0.5, 12.14 £0.7, 18.8 £ 1.1,
and 27.0 2.6 for U(2), U(3), U(4), U(5), and
U(6), respectively. Beyond the crossover region in
the low-temperature regime the average action per
plaquette for ordered and disordered starting lattices
converges after 100 iterations to a unique value for
U(2) [Fig. 1(a)] and U(3) [Fig. 1(b)]. However, for
U@) [Fig. 1(c)], U®) [Fig. 1(d)], and U(6) [Fig.
1(e)] more than 100 iterations through the lattice are
needed for ordered and disordered starting lattices to
converge to a unique value of the average action per
plaquette. This may be due to insufficient optimiza-
tion of the algorithm with these large groups.

Also shown in Fig. 1 are the leading-order high-
and low-temperature expansions of Egs. (1a) and
(2a), respectively. For 8 << 8. the Monte Carlo-
generated data fit the first two terms of the high-
temperature expansions almost exactly. For g8 >> g,
the data are certainly converging on the leading-order
low-temperature expansions and these act as lower
bounds on the data. In Figs. 1(a)—1(e), no evidence
is found for any structure near the U(1) critical
point'®12 at g=1.0.

Figures 2(a)—2(e) show the average action per pla-
quette as a function of the Monte Carlo iterations for
the U(2), U@3), U(4), U(5), and U(6) gauge groups,
respectively, on periodic 4 hypercubical lattices for
both ordered and disordered starts. All of these dia-
grams correspond to 500 iterations through the lattice
at the approximate critical inverse temperatures for
their respective gauge groups. The ordered and
disordered starting lattices converge to two distinct
values of the average action per plaquette, indicating
the presence of two distinct phases. We can see that
the critical inverse temperatures of U(4), U(5), and
U(6) are near those for SU(4),>¢ SU(5),>" and
SU(6),? respectively, suggesting the U(N)—SU(N)
for large N.

In Fig. 3 we show the average action per plaquette
as a function of the Monte Carlo iterations for the
U(2) gauge theory on a periodic 4 hypercubical lat-
tice for both ordered and disordered starts for two
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FIG. 3. The evolution of the ordered and disordered con-
figurations for the average action per plaquette for U(2) for
a 44 lattice at two values of the inverse temperature (a)
B=3.25 and (b) B=3.35.

values of the inverse temperature on either side of
the critical inverse temperature. For 8=3.25 [Fig.
3(a)] and B=3.35 [Fig. 3(b)] the ordered and disor-
dered starting lattices converge to a unique value of
the average action per plaquette after approximately
110 and 160 iterations, respectively. This is to be
compared with Fig. 2(a) where we saw that after 500
iterations the ordered and disordered starts failed to
converge to a unique value. This is fairly convincing
evidence that we have a first-order phase transition in
U(2) gauge theory. A similar situation obtains for
the U(3), U(4), U(5), and U(6) gauge groups.

Recently, a technique'® has been developed for lo-
cating the critical point in U(N) gauge theories on
the lattice with the predicted result that 8, =3.16,
7.11, 12.64, 19.75, and 28.44 for U(2), U(3), U4),
U(5), and U(6), respectively. We can see that these
results are in good agreement with our own.
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